Model-Driven Development
From Object-Oriented Design to Actor-Oriented Design

Edward A. Lee
Professor
UC Berkeley

Invited Talk
Workshop on Software Engineering for Embedded Systems
From Requirements to Implementation

a.k.a.: The Monterey Workshop
Chicago, Sept. 24, 2003

L H g T
i

P ey | T~
P\ l aVaTelea =
s\ 11— N W
(| pmaramaety | A /270, ;

(
{
{

Chess:
Center for Hybrid and Embedded Software Systems

 fed

iastat baomy
muuﬁ T
et
1T B
Eiki
il
LTI

Abstract

Most current software engineering is deeply rooted in procedural abstractions.
Objects in object-oriented design present interfaces consisting principally of
methods with ‘ry;)e signatures. A method represents a transfer of the locus of
control. Much of the talk of "models" in software engineering is about the static
structure of object-oriented designs. However, essential properties of real-time
systems, embedded systems, and distributed systems-of-systems are poorly defined
by such interfaces and by static structure. These say little about concurrency,

temporal properties, and assumptions and guarantees in the face of dynamic
invocation.

Actor-oriented design contrasts with (and complements) object-oriented design
by emphasizing concurrency and communication between comﬁonen’rs. Components
called actors execute and communicate with other actors. While interfaces in
object-oriented design (methods, principally) mediate transfer of the locus of
control, interfaces in actor-oriented design (which we call ports) mediate

commulnica'rion. But the communication is not assumed to involve a transfer of
control.

By focusing on the actor-oriented architecture of systems, we can leverage
structure that is poorly described and expressed in procedural abstractions.
Managing concurrency, for instance, is notoriously difficult using threads, mutexes
and semaphores, and yet even these primitive mechanisms are extensions of
procedural abstractions. In actor-oriented abstractions, these low-level
mechanisms do not even rise to consciousness, forming instead the "assembly-level"
mechanisms used to deliver much more sophisticated models of computation.

In this talk, I will outline the models of computation for actor-oriented design
that look the most promising for embedded systems.

UC Berkeley, Edward Lee 2

Platforms

applications

+ DEP systams
commurnications systems .

/T

A platformis a set
of designs (the
rectangles at the
right, e.g., the set of
all x86 binaries).

Mode/-based design
is specification of
designs in platforms
with useful modeling
properties (e.g.,
Simulink block
diagrams for control
systems).

BE rmadels synchronous™, spF madels
— madels

actor-oriented maodels

synthesizable
WHOL programs
VHDL programs

|

| \. standard

cell Java byte code programs.
‘ desbgns
| v
| FPGA configurations . Jk::
- progra
| executables
A e
P 1.6GHz
FPGAs
microprocessors
silicon chips

source: Edward A, Lee UC Berkeley, 2003

Platforms

e g applications

Where the
Action Has Been:

Giving the red
platforms useful
modeling properties
(e.g. UML, MDA)

Getting from red
platforms to blue
platforms.

Simulink rmodels
7 ik actor-oriented models

synithesizable
VHOL programs

LY @f«f program
ﬂ:;:jard Java byte code pmgrk
deslgns
VM
®BE programs

= ra

MiCIoprocessons

silicon chips

v, 2003

Planrfor.ms \m\ applications

/ \-__\
Where the
Action Will Be:
Giving the red

platforms useful
modeling properties
(via models of
computation)

standard
cell
daslgns

Java byte code programs

v
x86 programs

Getting from red
platforms to blue
platforms.

Abstraction

How abstract a
design is
depends on how
many refinement
relations
separate the
design from one
that is physically
realizable.

Three paintings by Piet Mondrian

Design Framework

A design framework is a collection of
platforms and realizable relations between
platforms where at least one of the
platforms is a set of physically realizable
designs, and for any design in any platform,
the transitive closure of the relations from
that design includes at least one physically
realizable design.

In mode/-based design, a specificationis a
point in a platform with useful modeling
properties.

UC Berkeley, Edward Lee 7

UML and MDA
Trying to Give Useful Modeling Properties to Object-Oriented Designs
10Port Interface is a
0.1 0.n collection of
! nterface methods and their
Receiver :
UML static ke whee | VD€ Slgnatures.
structure ——
d | a g ram +i:sRi7r(’7rar;?)e:,(l:L;oleag
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

Inheritance '—-} / e
3 Implementation I—}

«Interface»
Mailbox F i Qi Recei DEReceiver SDFReceiver
T T 1.1 1.1
= b 1.1
1.1 FIFOQueue ArrayFIFOQueue
CTi i CSPRecei! F i

UC Berkeley, Edward Lee 8

But These Are Fundamentally Rooted in a
Procedural Abstraction

+ Some Problems:
- 0O says little or nothing about concurrency and ‘rime- Focus on this
- Components implement low-level communication protocols
- Distributed components are designed to fixed middleware APIs
- Re-use potential is disappointing
+ Some Partial Solutions
- Adapter objects (laborious to design and deploy)
- Model-driven architecture (still fundamentally OO)
- Executable UML (little or no useful modeling properties)
Our Solution: Actor-Oriented Design

TextToSpeech

Text to Speech initialize(): void

i E}] O eech out notify(): void
ey o ‘ isReady(): boolean
getSpeech(): double[]

OO interface definition gives procedures
actor-oriented interface definition says that have to be invoked in an order not
“Give me text and I'll give you speech” specified as part of the interface definition.

The Turing Abstraction of Computation

h arguments + state in
—

/1
/1
/1
/1
/1

‘ results + state out

sequence f: State — State

Everything "computable” can be given
by a terminating sequential program.

UC Berkeley, Edward Lee 10

Timing is Irrelevant

All we need is terminating sequences of state
transformations! Simple mathematical structure:
function composition.

UC Berkeley, Edward Lee 11

What about “real time"?

e 4

Make it faster!

UC Berkeley, Edward Lee 12

Worse: Processes & Threads are a
Terrible Way to Specify Concurrency

For embedded software,
these are typically
nonterminating
computations. Infinite sequences of
state transformations
. : are called "processes”
|nC0m|ng meSSage |::> or \\Thr‘eadsu
Their “interface” to
the outside is a
sequence of messages
in or out.

outgoing message <—

UC Berkeley, Edward Lee 13

Interacting Processes Impose Partial Ordering
Constraints on Each Other

}stalled by precedence

J

timing dependence

J

stalled for rendezvous

(NN

UC Berkeley, Edward Lee 14

Interacting Processes Impose Partial Ordering
Constraints on External Interactions

After composition:
External
interactions are ho
longer ordered.

iyl

An aggregation of
processes is not a
process. What is
it?

f

IIII IIIIII ‘III

§ 1

UC Berkeley, Edward Lee 15

public void addChangelistener (ChangelListener listener) { |
NawedChj container = (NawedChj) getContaineri():
if (container != null) |
container. addChangelistener (listener) »
1 else {
if [_changslListeners == null)] {
_changelisteners = new LinkedLisci):
_changelisteners.add(0, listener):
} else if (! changelListeners.containsilistener)) {
_changelisteners.add(0, listener):

A Story: Code ReView in the CHess Software Lab

Code Review in the Chess Software Lab

A Typical Story

Code review discovers that a method needs to be
synchronized to ensure that multiple threads do not
reverse each other's actions.

No problems had been detected in 4 years of using the

code.

Three days after making the change, users started
reporting deadlocks caused by the new mutex.

Analysis of the deadlock takes weeks, and a correction

is difficult.

public void addChangelistener (Changelistener listener) {

NamwedOb] container = (NawedObj) getContainer():

if (container != null) {
container.addChangelistener (listener) ;

} else {

if | changelisteners —= null) {
“changelisteners = new LinkedList () :
“changelisteners.add(0, listensr):
} else if {! changelisteners.contains |listenex)) {
_changelisteners.add(0, listensr):
¥
¥
}

UC Berkeley, Edward Lee 17

What it Feels Like to Use the synchronized

Keyword in Java

software and disk drives, Scientific American, September 1999.

Image “borrowed” from an Iomega advertisement for Y2K

UC Berkeley, Edward Lee 18

Threads, Mutexes, and Semaphores are a Terrible
Basis for Concurrent Software Architectures

Ad hoc composition.

UC Berkeley, Edward Lee 19

Focus on Actor-Oriented Design

 Object orientation:

What flows through
GRS EI) an object is
data sequential control
p methods
call return
* Actor orientation: What flows through
an object is
actor name streams of data
data (state)
- parameters ‘
Input data — Output data

UC Berkeley, Edward Lee 20

Example of Actor-Oriented Design
(in this case, with a visual syntax)

Ptol le: Director from a library

fo emy II example: defines component

Ty =] SoF e o e interaction semantics

i e Sriireeifeneptiechuues Synchronous Dataflow Modeling
j;;m:“‘”"m SR ERastLy This example illustrates SDF modeling, which

is well-suited to signal processing. In SDF,

__limage processing

(=4 spectrum companents cammunicate using streams, but their

. = Sinewave2 Lm Production and consumption rates are fixed.

[i : Because of these fixed rates, extensive static
=i analysis of the model is possible, enabling

H ELevwnsonDurbin

- [EE] axirumErtropySpm
. Periudogram

o [Praselnwrap

h Smocrthe iodagr:

efficient code generation and optimization.

potrum

SequencePlotier
TaE

'- Ehu“"x: =
Large, domain-polymorphic Component

component library. Model of Computation:
Key idea. The model of computation is part of the * Messaging schema
framework within which components are embedded * Flow of control
rather than part of the components themselves. Thus, * Concurrency
components need to declare behavioral properties. UC Berkeley, Edward Lee 21

Examples of Actor-Oriented
Component Frameworks

+ Simulink (The MathWorks)
+ Labview (National Instruments)
* Modelica (Linkoping)
+ OCP, open control platform (Boeing)
* GME, actor-oriented meta-modeling (Vanderbilt)
+ Easyb (Boeing)
SPW, signal processing worksystem (Cadence)
System studio (Synopsys)
ROOM, real-time object-oriented modeling (Rational)
Port-based objects (U of Maryland)
I/0 automata (MIT)
VHDL, Verilog, SystemC (Various)
Polis & Metropolis (UC Berkeley)
Ptolemy & Ptolemy IT (UC Berkeley)

UC Berkeley, Edward Lee 22

Actor View of
Producer/Consumer Components

Basic Transport: Models of Computation:

receiver.put(t)

send(0,¢ * push/pull
* continuous-time
* dataflow
* rendezvous
Receiver * discrete events
(inside port)

* synchronous

* time-driven

* publish/subscribe

IORelation

Many actor-oriented frameworks
assume a producer/consumer metaphor
for component interaction.

UC Berkeley, Edward Lee 23

Actor Orientation vs. Object Orientation

+ Object Orientation
- procedural interfaces
- aclass is a type (static structure)
- type checking for composition
- separation of interface from implementation
- subtyping
- polymorphism This is a vision of the
future: Few actor-

. . oriented frameworks
Actor Orientation fully offer this view.

- concurrent interfaces Eventually, all will.
- a behavior is a type
- type checking for composition of behaviors

- separation of behavioral interface from implementation
- behavioral subtyping

- behavioral polymorphism - Focus on this

UC Berkeley, Edward Lee 24

Polymorphism

+ Data polymorphism:

Add numbers (int, float, double, Complex)

Add strings (concatenation)

Add composite types (arrays, records, matrices)
Add user-defined types

+ Behavioral polymorphism:

In dataflow, add when all connected inputs have data

In a time-triggered model, add when the clock ticks

In discrete-event, add when any connected input has
data, and add in zero time

In process networks, execute an infinite loop in a thread
that blocks when reading empty inputs

In CSP, execute an infinite loop that performs
rendezvous on input or output

In push/pull, ports are push or pull (declared or inferred)
and behave accordingly

In real-time CORBA, priorities are associated with ports
and a dispatcher determines when to add

AddSubtract
B+
Bt —

o

By not choosing
among these
when defining
the component,
we get a huge
increment in
component re-
usability. But
how do we
ensure that the
component will
work in all these
circumstances?

UC Berkeley, Edward Lee 25

Object-Oriented Approach to Achieving

Behavioral Polymorphism

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

Director

I0Port

Recall: Behavioral polymorphism
is the idea that components can be
defined to operate with multiple
models of computation and multiple
middleware frameworks.

producer
actor

These polymorphic methods
implement the communication
semantics of a domain in Ptolemy
IT. The receiver instance used in
communication is supplied by the
director, not by the component.

consumer
actor

Receiver

UC Berkeley, Edward Lee 26

Behavioral Polymorphism
The Object Oriented View

I0Port

0.n

«Interface»

thrJZws

i Receiver
throws

NoTokenException

+get() : Token

+getContainer() : IOPort
+hasRoom() : boolean
l nte rface +hasToken() : boolean

+put(t : Token)

| Implementation‘ |

+setContainer(port : IOPort)

Mailbox

«Interface»

SDF

=

CTi

CSP

sl

FIFOQueue

ArrayFIFOQueue

UC Berkeley, Edward Lee 27

But What If..

* The component requires data at all
connected input ports?

* The component can only perform meaningful "

operations on two successive inputs?

* The component can produce meaningful
output before the input is known (enabling it
to break potential deadlocks)?

+ The component has a mutex monitor with
another component (e.g. o access a common
hardware resource)?

AddSubtract
o+

-

None of these is expressed in the object-oriented
interface definition, yet each can interfere with
behavioral polymorphism.

UC Berkeley, Edward Lee 28

Behavioral Types -
A Practical Approach

* Capture the dynamic interaction of components in types
+ Obtain benefits analogous to data typing.
* Call the result behavioral types.

Director

producer
actor

I0OPort

consumer
actor

Receiver

See Liskov & Wing, ACM, 1994

for an intro to

behavioral types.

+ Communication has

- data types

- behavioral types
+ Components have

- data type signatures

- behavioral type signatures
+ Components are

- data polymorphic

- behaviorally polymorphic

UC Berkeley, Edward Lee 29

Behavioral Type System

We capture

patterns of

component interaction in a

type system

framework.

We describe interaction

types and co

mponent

behavior using extended /nterface
automata (de Alfaro & Henzinger)

We do type checking through
automata composition (detect
component incompatibilities)

Subtyping order is given by
the alternating simulation
relation, supporting behavioral polymorphism.

communication -
execution 3 RS

interface O »
S \Q

=
=l

=
=
—

f?
— =

o)

A £
3
——

N’

A type sighature for
a consumer actor.

An alternative representation of behavioral types
would be pre/post conditions, as in Liskov & Wing.

UC Berkeley, Edward Lee 30

Enabled by a Behavioral Type System

» Checking behavioral compatibility of

components that are composed.

» Checking behavioral compatibility of

components and their frameworks.

* Behavioral subclassing enables
interface/implementation separation.

* Helps with the definition of behaviorally-
polymorphic components.

UC Berkeley, Edward Lee 31

Enabled by Behavioral Polymorphism (1):
More Re-Usable Component Libraries

__Isaurces

__Irandom
1 flow conirel
__Irealfime

_logic

I string

I conversions
_larray

) matrix

=+ 4 signel processing
_Jaudio

| communications
1 fitering

| image processing
=)+ _4 spectrum

DB

[#__] domsin specific

: o

e Data polymorphic components
o Domain polymorphic components

actor domains
=) s |
actor.lib 4
AbsoluteValue lib
Accumulator
AddSubtract actor lib.comm } actor.lib.gui ﬁﬂ(ﬂvToS‘Ewem
utocorrelation
ArrayAy d
e ConvolutionalCoder ArrayPlotter DelayLine
ArrayElement
ArrayExtract DeScrambler ArrowKeySensor DotProduct
ArrayLength HadamardCode BarGraph DownSample
ArrayMaximum | Scrambler Display FFT
ViterbiDecoder HistogramPlotter FIR
IFFT
Average
KeystrokeSensor LMSAdaptive
(E;emoum actor.lib jai . LineCoder
oot Plotter MatrixToSequence
Sauner DoubleMatrixToJAl PlotterBase RaisedCosine
DB JAIAffineTransform RS
Differential JAIBMPWiiter RealTimePlotter pe:
Di JAIBand SequencePlotter SampleDalay
SequenceScope equenceToArray
Caveson Nt SkelchedSource SequenceTobatrx
SliderSource UpSample
IR JAIBoxFilter VariableFIR
Interpolator JAIConvolve TimedPlotter
Lattice JAICrop TimedScope VariableLattice
LevinsonDurbin JAIDCT XYPlotter VariableRecursiveLattice
Limiter JAIDFT XYScope
LinearDifferenceEquationSystem | JAlDataCaster
LookupTable JAIEdgeDetection actor lib.image } '
MathFunction JAIIDCT :
Maxindex JAIIDFT ImageDisplay i
Maximum JAllmageReader ImageReader | UML package
Minimum JAllmageToken ImageRotate i i
e || diagram of key
PhaseUnwrap JAIJPEGWriter Transform H 1
PoissonClock JAlLog URLTolmage actor libraries
Pulse JAIMagnitude - A
Quanizer JAMedianFiter I included with
RecursiveLatice APerodicshit ColorFinder Ptolemy Il.
Rician JAIPhase JIMFimageToken | |
Scale JAIPolarToComplex PlaySound |
TrigFunction JAIRotate VideoCamera i
Uniform JAIScale |
JAITIFFWriter |
JAIToDoubleMatrix actor.lib javasound f----4
JAlTranslate
AudioCapture
JAlTranspose AudioPlayer
AudioReadBuffer
AudioReader
AudioWriteBuffer
AudioWriter

Berkeley, Edward Lee 32

Enabled by Behavioral Polymorphism (2):
Hierarchical Heterogeneity

Giotto director
indicates a new model of
computation.

mator_current

| Giotto Director
I:I throttle_motor

throttle_position

+—m

monitor

servo_control

‘ EE

Heterogeneous model of the UC Berkeley Vehicle Dynar
Electronic Throttle Controller.

by Paul Griffiths, Christoph Kirsch, Tunc Simsek, Jason
Last updated January 15, 2002

user_made

e T

manager

pedal_paosition

CT Directar

/]

throttle pasitiar)

throttle

powertrain inp

Domains can be
nested and mixed.

UC Berkeley, Edward Lee 33

Enabled by Behavioral Polymorphism (3):
Modal Models

Giotto Director

throttle_motor

motor_current monitor

servo_control

throttle_position

Smanaget”

Periodic, time-driven tasks

Controller task

user_mo
Modal servo control.

throttle_positions

desired_throttle_position

mode

serva_control_output

SDF Directar

throttle_positions

throttle_paosition

sliding mode controller with estimator

desired_throttle]

Modes (normal & faulty)

AddSubtract
n current

mode

UC Berkeley, Edward Lee 34

Enabled by Behavioral Polymorphism (4):
Mobile Models

Model-based distributed task management:

DE Director

TimedDelay
Const

PushConsumer

e order:

Authors:
Yang Zhao
MobileMadel Steve Neuendorffer
Xiaojun Liu
510 J

{wt

s

PushConsumer actor receives
pushed data provided via CORBA,
where the data is an XML model of a
signal analysis algorithm.

MobileModel actor accepts a
StringToken containing an XML
description of a model. It then
executes that model on a stream of
input data.

Data and domain type safety will help make such models secure

UC Berkeley, Edward Lee 35

Will Model-Based Design Yield Better Designs?

| What we are trying to replace: Today’s software architecture.

UC Berkeley, Edward Lee 36

Will Model-Based Design Yield Better Designs?

"Why isn't the answer XML, or
UML, or IP, or something like
that?"

Direct quote for a high-
ranking decision maker at a
large embedded systems
company with global reach.

The Box, Eric Owen Moss

Mandating use of the wrong platform is far worse
than tolerating the use of multiple platforms.

UC Berkeley, Edward Lee 37

Source: Contemporary California Architects, P. Jodidio, Tascheh, 1995

Better Architecture is Enabled but not
Guaranteed by Actor-Oriented Design

- Understandable
concurrency

- Systematic
heterogeneity
(enabled by
behavioral
polymorphism)

* More re-usable
component libraries

Source: Kaplan McLaughlin Diaz, R. Rappaport, Rockport, 1998

\I m ‘ R

Two Rodeo Drive, Kaplan, McLaughlin, Diaz UC Berkeley, Edward Lee 38

Conclusion - What to Remember

Actor-oriented design
- concurrent components interacting via ports
* Models of computation
- principles of component interaction
* Understandable concurrency
- compositional models
Behavioral types
- a practical approach to verification and interface definition

Behavioral polymorphism
- defining components for use in multiple contexts

http://ptolemy.eecs.berkeley.edu
http://chess.eecs.berkeley.edu

UC Berkeley, Edward Lee 39

