
1

Model-Driven Development
From Object-Oriented Design to Actor-Oriented Design

Chess:
Center for Hybrid and Embedded Software Systems

Edward A. Lee
Professor
UC Berkeley

Invited Talk
Workshop on Software Engineering for Embedded Systems
From Requirements to Implementation
a.k.a.: The Monterey Workshop
Chicago, Sept. 24, 2003

UC Berkeley, Edward Lee 2

Abstract

Most current software engineering is deeply rooted in procedural abstractions.
Objects in object-oriented design present interfaces consisting principally of
methods with type signatures. A method represents a transfer of the locus of
control. Much of the talk of "models" in software engineering is about the static
structure of object-oriented designs. However, essential properties of real-time
systems, embedded systems, and distributed systems-of-systems are poorly defined
by such interfaces and by static structure. These say little about concurrency,
temporal properties, and assumptions and guarantees in the face of dynamic
invocation.

Actor-oriented design contrasts with (and complements) object-oriented design
by emphasizing concurrency and communication between components. Components
called actors execute and communicate with other actors. While interfaces in
object-oriented design (methods, principally) mediate transfer of the locus of
control, interfaces in actor-oriented design (which we call ports) mediate
communication. But the communication is not assumed to involve a transfer of
control.

By focusing on the actor-oriented architecture of systems, we can leverage
structure that is poorly described and expressed in procedural abstractions.
Managing concurrency, for instance, is notoriously difficult using threads, mutexes
and semaphores, and yet even these primitive mechanisms are extensions of
procedural abstractions. In actor-oriented abstractions, these low-level
mechanisms do not even rise to consciousness, forming instead the "assembly-level"
mechanisms used to deliver much more sophisticated models of computation.

In this talk, I will outline the models of computation for actor-oriented design
that look the most promising for embedded systems.

2

UC Berkeley, Edward Lee 3

Platforms

A platform is a set
of designs (the
rectangles at the
right, e.g., the set of
all x86 binaries).

Model-based design
is specification of
designs in platforms
with useful modeling
properties (e.g.,
Simulink block
diagrams for control
systems).

source: Edward A. Lee, UC Berkeley, 2003

UC Berkeley, Edward Lee 4

Platforms

Where the
Action Has Been:

Giving the red
platforms useful
modeling properties
(e.g. UML, MDA)

Getting from red
platforms to blue
platforms.

source: Edward A. Lee, UC Berkeley, 2003

3

UC Berkeley, Edward Lee 5

Platforms

Where the
Action Will Be:

Giving the red
platforms useful
modeling properties
(via models of
computation)

Getting from red
platforms to blue
platforms.

source: Edward A. Lee, UC Berkeley, 2003

UC Berkeley, Edward Lee 6

Abstraction

How abstract a
design is
depends on how
many refinement
relations
separate the
design from one
that is physically
realizable.

Three paintings by Piet Mondrian

4

UC Berkeley, Edward Lee 7

Design Framework

A design framework is a collection of
platforms and realizable relations between
platforms where at least one of the
platforms is a set of physically realizable
designs, and for any design in any platform,
the transitive closure of the relations from
that design includes at least one physically
realizable design.

In model-based design, a specification is a
point in a platform with useful modeling
properties.

UC Berkeley, Edward Lee 8

UML and MDA
Trying to Give Useful Modeling Properties to Object-Oriented Designs

IOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

Interface is a
collection of
methods and their
type signatures.UML static

structure
diagram

Inheritance
Implementation

5

UC Berkeley, Edward Lee 9

But These Are Fundamentally Rooted in a
Procedural Abstraction

• Some Problems:
– OO says little or nothing about concurrency and time
– Components implement low-level communication protocols
– Distributed components are designed to fixed middleware APIs
– Re-use potential is disappointing

• Some Partial Solutions
– Adapter objects (laborious to design and deploy)
– Model-driven architecture (still fundamentally OO)
– Executable UML (little or no useful modeling properties)

• Our Solution:Actor-Oriented Design

OO interface definition gives procedures
that have to be invoked in an order not
specified as part of the interface definition.

TextToSpeech

initialize(): void
notify(): void
isReady(): boolean
getSpeech(): double[]

actor-oriented interface definition says
“Give me text and I’ll give you speech”

Focus on this

UC Berkeley, Edward Lee 10

The Turing Abstraction of Computation

arguments + state in

results + state out

sequence f : State → State

Everything “computable” can be given
by a terminating sequential program.

6

UC Berkeley, Edward Lee 11

Timing is Irrelevant

All we need is terminating sequences of state
transformations! Simple mathematical structure:
function composition.

f : State → State

UC Berkeley, Edward Lee 12

What about “real time”?

Make it faster!

7

UC Berkeley, Edward Lee 13

Worse: Processes & Threads are a
Terrible Way to Specify Concurrency

incoming message

outgoing message

Infinite sequences of
state transformations
are called “processes”
or “threads”

Their “interface” to
the outside is a
sequence of messages
in or out.

For embedded software,
these are typically
nonterminating
computations.

UC Berkeley, Edward Lee 14

Interacting Processes Impose Partial Ordering
Constraints on Each Other

stalled for rendezvous

stalled by precedence

timing dependence

8

UC Berkeley, Edward Lee 15

Interacting Processes Impose Partial Ordering
Constraints on External Interactions

After composition:
External
interactions are no
longer ordered.

An aggregation of
processes is not a
process. What is
it?

UC Berkeley, Edward Lee 16
A Story: Code Review in the Chess Software LabA Story: Code Review in the Chess Software Lab

9

UC Berkeley, Edward Lee 17

Code Review in the Chess Software Lab
A Typical Story

• Code review discovers that a method needs to be
synchronized to ensure that multiple threads do not
reverse each other’s actions.

• No problems had been detected in 4 years of using the
code.

• Three days after making the change, users started
reporting deadlocks caused by the new mutex.

• Analysis of the deadlock takes weeks, and a correction
is difficult.

UC Berkeley, Edward Lee 18

What it Feels Like to Use the synchronized
Keyword in Java

Im
ag

e
“b

or
ro

we
d”

 f
ro

m
 a

n
Io

m
eg

a
ad

ve
rt

is
em

en
t

fo
r

Y2
K

so
ft

wa
re

 a
nd

 d
is

k
dr

iv
es

, S
ci

en
ti

fi
c

Am
er

ic
an

, S
ep

te
m

be
r

19
99

.

10

UC Berkeley, Edward Lee 19

Threads, Mutexes, and Semaphores are a Terrible
Basis for Concurrent Software Architectures

Ad hoc composition.

UC Berkeley, Edward Lee 20

Focus on Actor-Oriented Design

• Object orientation:
class name

data

methods

call return

What flows through
an object is

sequential control

• Actor orientation:
actor name

data (state)

portsInput data
parameters

Output data

What flows through
an object is

streams of data

11

UC Berkeley, Edward Lee 21

Example of Actor-Oriented Design
(in this case, with a visual syntax)

Director from a library
defines component
interaction semantics

Large, domain-polymorphic
component library.

Ptolemy II example:

Key idea: The model of computation is part of the
framework within which components are embedded
rather than part of the components themselves. Thus,
components need to declare behavioral properties.

Model of Computation:
• Messaging schema
• Flow of control
• Concurrency

Component

UC Berkeley, Edward Lee 22

Examples of Actor-Oriented
Component Frameworks

• Simulink (The MathWorks)
• Labview (National Instruments)
• Modelica (Linkoping)
• OCP, open control platform (Boeing)
• GME, actor-oriented meta-modeling (Vanderbilt)
• Easy5 (Boeing)
• SPW, signal processing worksystem (Cadence)
• System studio (Synopsys)
• ROOM, real-time object-oriented modeling (Rational)
• Port-based objects (U of Maryland)
• I/O automata (MIT)
• VHDL, Verilog, SystemC (Various)
• Polis & Metropolis (UC Berkeley)
• Ptolemy & Ptolemy II (UC Berkeley)
• …

12

UC Berkeley, Edward Lee 23

Actor View of
Producer/Consumer Components

Models of Computation:

• push/pull
• continuous-time
• dataflow
• rendezvous
• discrete events
• synchronous
• time-driven
• publish/subscribe
•…

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

Many actor-oriented frameworks
assume a producer/consumer metaphor
for component interaction.

UC Berkeley, Edward Lee 24

Actor Orientation vs. Object Orientation

• Object Orientation
– procedural interfaces
– a class is a type (static structure)
– type checking for composition
– separation of interface from implementation
– subtyping
– polymorphism

• Actor Orientation
– concurrent interfaces
– a behavior is a type
– type checking for composition of behaviors
– separation of behavioral interface from implementation
– behavioral subtyping
– behavioral polymorphism

This is a vision of the
future: Few actor-
oriented frameworks
fully offer this view.
Eventually, all will.

Focus on this

13

UC Berkeley, Edward Lee 25

Polymorphism

• Data polymorphism:
– Add numbers (int, float, double, Complex)
– Add strings (concatenation)
– Add composite types (arrays, records, matrices)
– Add user-defined types

• Behavioral polymorphism:
– In dataflow, add when all connected inputs have data
– In a time-triggered model, add when the clock ticks
– In discrete-event, add when any connected input has

data, and add in zero time
– In process networks, execute an infinite loop in a thread

that blocks when reading empty inputs
– In CSP, execute an infinite loop that performs

rendezvous on input or output
– In push/pull, ports are push or pull (declared or inferred)

and behave accordingly
– In real-time CORBA, priorities are associated with ports

and a dispatcher determines when to add

By not choosing
among these
when defining
the component,
we get a huge
increment in
component re-
usability. But
how do we
ensure that the
component will
work in all these
circumstances?

UC Berkeley, Edward Lee 26

Object-Oriented Approach to Achieving
Behavioral Polymorphism

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods
implement the communication
semantics of a domain in Ptolemy
II. The receiver instance used in
communication is supplied by the
director, not by the component.

producer
actor

consumer
actor

IOPort

Receiver

Director

Recall: Behavioral polymorphism
is the idea that components can be
defined to operate with multiple
models of computation and multiple
middleware frameworks.

14

UC Berkeley, Edward Lee 27

Behavioral Polymorphism
The Object Oriented View

IOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

Interface

Implementation

UC Berkeley, Edward Lee 28

But What If…

• The component requires data at all
connected input ports?

• The component can only perform meaningful
operations on two successive inputs?

• The component can produce meaningful
output before the input is known (enabling it
to break potential deadlocks)?

• The component has a mutex monitor with
another component (e.g. to access a common
hardware resource)?

None of these is expressed in the object-oriented
interface definition, yet each can interfere with
behavioral polymorphism.

15

UC Berkeley, Edward Lee 29

Behavioral Types –
A Practical Approach

• Capture the dynamic interaction of components in types
• Obtain benefits analogous to data typing.
• Call the result behavioral types.

producer
actor

consumer
actor

IOPort

Receiver

Director

• Communication has
– data types
– behavioral types

• Components have
– data type signatures
– behavioral type signatures

• Components are
– data polymorphic
– behaviorally polymorphicSee Liskov & Wing, ACM, 1994

for an intro to behavioral types.

UC Berkeley, Edward Lee 30

Behavioral Type System

execution
interface

communication
interface

A type signature for
a consumer actor.

• We capture patterns of
component interaction in a
type system framework.

• We describe interaction
types and component
behavior using extended interface
automata (de Alfaro & Henzinger)

• We do type checking through
automata composition (detect
component incompatibilities)

• Subtyping order is given by
the alternating simulation
relation, supporting behavioral polymorphism.

An alternative representation of behavioral types
would be pre/post conditions, as in Liskov & Wing.

16

UC Berkeley, Edward Lee 31

Enabled by a Behavioral Type System

• Checking behavioral compatibility of
components that are composed.

• Checking behavioral compatibility of
components and their frameworks.

• Behavioral subclassing enables
interface/implementation separation.

• Helps with the definition of behaviorally-
polymorphic components.

UC Berkeley, Edward Lee 32

Enabled by Behavioral Polymorphism (1):
More Re-Usable Component Libraries

actor

actor.lib

AbsoluteValue
Accumulator
AddSubtract
ArrayAppend
ArrayElement
ArrayExtract
ArrayLength
ArrayMaximum
ArrayMinimum
Average
Bernoulli
Const
Counter
DB
Differential
DiscreteRandomSource
Expression
Gaussian
IIR
Interpolator
Lattice
LevinsonDurbin
Limiter
LinearDifferenceEquationSystem
LookupTable
MathFunction
MaxIndex
Maximum
Minimum
MultiplyDivide
PhaseUnwrap
PoissonClock
Pulse
Quantizer
RandomSource
RecursiveLattice
Rician
Scale
TrigFunction
Uniform

ConvolutionalCoder
DeScrambler
HadamardCode
Scrambler
ViterbiDecoder

actor.lib.comm

ArrayPlotter
ArrowKeySensor
BarGraph
Display
HistogramPlotter
InteractiveShell
KeystrokeSensor
MatrixViewer
Plotter
PlotterBase
RealTimePlotter
SequencePlotter
SequenceScope
SketchedSource
SliderSource
TimedPlotter
TimedScope
XYPlotter
XYScope

actor.lib.gui

AudioCapture
AudioPlayer
AudioReadBuffer
AudioReader
AudioWriteBuffer
AudioWriter

actor.lib.javasound

ImageDisplay
ImageReader
ImageRotate
ImageToString
Transform
URLToImage

actor.lib.image

DoubleMatrixToJAI
JAIAffineTransform
JAIBMPWriter
JAIBandCombine
JAIBandSelect
JAIBorder
JAIBoxFilter
JAIConvolve
JAICrop
JAIDCT
JAIDFT
JAIDataCaster
JAIEdgeDetection
JAIIDCT
JAIIDFT
JAIImageReader
JAIImageToken
JAIInvert
JAIJPEGWriter
JAILog
JAIMagnitude
JAIMedianFilter
JAIPNMWriter
JAIPeriodicShift
JAIPhase
JAIPolarToComplex
JAIRotate
JAIScale
JAITIFFWriter
JAIToDoubleMatrix
JAITranslate
JAITranspose

actor.lib.jai

ColorFinder
JMFImageToken
PlaySound
VideoCamera

actor.lib.jmf

domains

sdf

lib

ArrayToSequence
Autocorrelation
DelayLine
DotProduct
DownSample
FFT
FIR
IFFT
LMSAdaptive
LineCoder
MatrixToSequence
RaisedCosine
Repeat
SampleDelay
SequenceToArray
SequenceToMatrix
UpSample
VariableFIR
VariableLattice
VariableRecursiveLattice

UML package
diagram of key
actor libraries
included with
Ptolemy II.

Data polymorphic components
Domain polymorphic components

17

UC Berkeley, Edward Lee 33

Enabled by Behavioral Polymorphism (2):
Hierarchical Heterogeneity

Giotto director
indicates a new model of
computation.

Domain-polymorphic component.

Domains can be
nested and mixed.

UC Berkeley, Edward Lee 34

Enabled by Behavioral Polymorphism (3):
Modal Models

Periodic, time-driven tasks

Modes (normal & faulty)

Controller task

18

UC Berkeley, Edward Lee 35

Enabled by Behavioral Polymorphism (4):
Mobile Models

Model-based distributed task management:

MobileModel actor accepts a
StringToken containing an XML
description of a model. It then
executes that model on a stream of
input data.

PushConsumer actor receives
pushed data provided via CORBA,
where the data is an XML model of a
signal analysis algorithm.

Authors:
Yang Zhao
Steve Neuendorffer
Xiaojun Liu

Data and domain type safety will help make such models secure

UC Berkeley, Edward Lee 36

Will Model-Based Design Yield Better Designs?

What we are trying to replace: Today’s software architecture.

19

UC Berkeley, Edward Lee 37

Will Model-Based Design Yield Better Designs?

“Why isn’t the answer XML, or
UML, or IP, or something like
that?”

Direct quote for a high-
ranking decision maker at a
large embedded systems
company with global reach.

The Box, Eric Owen Moss

Mandating use of the wrong platform is far worse
than tolerating the use of multiple platforms. So

ur
ce

: C
on

te
m

po
ra

ry
 C

al
if

or
ni

a
Ar

ch
it

ec
ts

, P
. J

od
id

io
, T

as
ch

en
, 1

99
5

UC Berkeley, Edward Lee 38

Better Architecture is Enabled but not
Guaranteed by Actor-Oriented Design

• Understandable
concurrency

• Systematic
heterogeneity
(enabled by
behavioral
polymorphism)

• More re-usable
component libraries

Two Rodeo Drive, Kaplan, McLaughlin, Diaz

So
ur

ce
: K

ap
la

n
M

cL
au

gh
lin

 D
ia

z,
 R

. R
ap

pa
po

rt
, R

oc
kp

or
t,

 1
99

8

20

UC Berkeley, Edward Lee 39

Conclusion – What to Remember

• Actor-oriented design
– concurrent components interacting via ports

• Models of computation
– principles of component interaction

• Understandable concurrency
– compositional models

• Behavioral types
– a practical approach to verification and interface definition

• Behavioral polymorphism
– defining components for use in multiple contexts

http://ptolemy.eecs.berkeley.edu
http://chess.eecs.berkeley.edu

